May 18, 2009 Chemistry 218, Molecular Structure Second Examination-Spring 2009 Lara Halaoui

KEY

Name:

ID number:

Signature:

Useful information:

Permittivity of vacuum:  $\varepsilon_o = 8.854187816 \times 10^{-12} \text{ C}^2$  .  $\text{J}^{-1}$  m<sup>-1</sup>  $4\pi\varepsilon_o = 1.112650056 \times 10^{-10} \text{ C}^2$  .  $\text{J}^{-1}$  m<sup>-1</sup> Bohr magneton:  $\beta = 9.2740154 \times 10^{-24} \text{ J.T}^{-1}$ 

Planck constant:  $h = 6.6260755 \times 10^{-34} \text{ J.s}$ 

Proton charge:  $e = 1.60217733 \times 10^{-19}$  C

Speed of light in vacuum:  $c = 2.99792458 \times 10^{8} \,\text{m.s}^{-1}$ 

Electron rest mass:  $m_e = 9.1093897 \times 10^{-31} \text{ kg}$ 

Bohr radius:  $a_o = 5.29177249 \times 10^{-11} \,\mathrm{m}$ 

A Hartree 
$$E_h = \frac{m_e e^4}{16\pi^2 \varepsilon_o^2 \hbar^2} = \frac{e^2}{4\pi \varepsilon_o a_o} = 4.3597 \times 10^{-18} J$$

Potential energy V (nuclear charge Z and electron):  $V = -\frac{Ze^2}{4\pi\varepsilon_a r}$  or  $-\frac{Ze^2}{r}$ 

$$E_n = \frac{-m_e e^4}{32\pi^2 \varepsilon_o^2 \hbar^2 n^2} = \frac{-e^2}{8\pi \varepsilon_o a_o n^2} \text{ or } \frac{-e^2}{2a_o n^2} \text{ for H atom}$$

$$\nabla^2 = \frac{1}{r^2} \frac{\partial}{\partial r} \left( r^2 \frac{\partial}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left( \sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2}{\partial \phi^2}$$

$$\psi_{1s} = \frac{1}{\sqrt{\pi}} \left( \frac{1}{a_o} \right)^{3/2} e^{-r/a_n}$$

 $d\tau = r^2 \sin\theta \, dr \, d\theta \, d\phi$ 

$$\int_{0}^{\infty} x^{n} e^{-ax} dx = \frac{n!}{a^{n+1}}; n \text{ is a positive integer}$$

$$\int_{0}^{\infty} x^{2n} e^{-\alpha x^{2}} dx = \frac{1 \cdot 3 \cdot 5 \dots (2n-1)}{2^{n+1}} \sqrt{\frac{\pi}{\alpha^{2n+1}}}$$

Rayleigh Ratio: 
$$\xi = \frac{\int \psi^* \hat{H} \psi \ d\tau}{\int \psi^* \psi \ d\tau}$$

Rayleigh-Ritz method:  $\det \left| H_{ij} - \xi S_{ij} \right| = 0$ 

Perturbation theory, 1st order correction to energy:  $E^{(1)}=\int\!\!\psi^{(o)^*}\hat{H}^{(1)}\psi^{(o)}d\tau$ 

Electronic atomic transitions selection rules, absence of magnetic field:  $\Delta S=0; \Delta L=\pm 1; \Delta J=0, \pm 1 \ \text{except} \ J=0 \to J=0$ 

Electronic atomic transitions selection rules, presence of magnetic field:  $\Delta S=0; \Delta L=\pm 1; \Delta J=0, \pm 1 \text{ except J}=0 \rightarrow \text{J}=0; \Delta \text{M}_{\text{j}}=0, \pm 1$ 

Part I. Instructions: Circle one answer. No penalty. 5 points each. (25%)

 $\bullet$  When considering spin/orbit coupling, in the *absence* of a magnetic field, the atomic absorption transition of the n= 3 to n = 1 of the hydrogen atom will consist of

| LUIIII | absorption transfer         |                   |     |       |        |         |                 |
|--------|-----------------------------|-------------------|-----|-------|--------|---------|-----------------|
| lines: |                             |                   | - 1 | 25.1  | 3p' 21 | 21 1    | 34              |
| (a.)   | 2                           | n= 3              | 35' | 251/2 | 36     | 3/2; 12 | . 0 . 1         |
| b.     | 3                           |                   |     |       | al=1   | 1       | 2P\$12<br>2P1/2 |
| C.     | 4                           |                   | 101 | 2511  | 201    | TA      | 21/2            |
| d.     | 7                           | n=1               | 12  | -31/2 |        |         | 2011            |
| e.     | 9                           |                   |     |       |        |         | 21/2            |
| f.     | None of the above, the numb | per of lines is _ |     |       |        |         |                 |

 $\bullet$  Which of the following is the correct term symbol for the Ground State of Zr ([Kr]5s $^2$ 4d $^2$ ) (hint: find ground state term symbol without finding all the term symbols).

(Ar) 55° 4d°) (hint: find ground state term symbol without states 
$$\frac{3D_2}{D_2}$$

a.  $\frac{3D_2}{D_2}$ 

b.  $\frac{1}{D_2}$ 

c.  $\frac{3F_4}{SF_2}$ 

e.  $\frac{1}{F_4}$ 

f. None of the above, the term symbol for the ground state is \_\_\_\_\_\_

| • Arrange the following term symbols for the C atom configuration $1s^22s^22p^2$ : $^1D_2$ , $^3P_0$ , $^3P_1$ , $^3P_2$ , $^1S_0$ in the order of increasing energy according to Hund's rules for equivalent electrons. Hund's Rules.  a. $^1D_2<^3P_0<^3P_1<^3P_2<^1S_0$ Rules.  b. $^3P_0<^3P_1<^3P_2<^1D_2<^1S_0$ then largest $^1$ then $^1$ |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| • Which of the following wavefunctions is acceptable for a 2 electron system (He)  a. $\Psi_n(1)\Psi_n(2)\alpha(1)\beta(2)$ b. $\Psi_n(1)\Psi_n(2)[\alpha(2)\beta(1)-\alpha(1)\beta(2)]$ c. $\Psi_n(1)\Psi_n(2)[\alpha(2)\alpha(1)-\beta(1)\beta(2)]$ d. $\Psi_n(1)\Psi_n(2)[\alpha(2)\beta(1)+\alpha(1)\beta(2)]$ e. $\Psi_n(1)\Psi_n(2)[\alpha(2)\alpha(1)+\beta(1)\beta(2)]$ e. $\Psi_n(1)\Psi_n(2)[\alpha(2)\alpha(1)+\beta(1)\beta(2)]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| <ul> <li>Which of the following statements is false?</li> <li>a. The ground state energy for the He atom is -2Eh</li> <li>b. The atomic unit for distance is the Bohr radius ao, the atomic unit for energy is the Hartree Eh, and the atomic unit for angular momentum is h</li> <li>C. The spin-orbital wavefunction for the Li atom (Z=3) is separable into a spin part and a spatial part (i.e., it is a product of a spin function separated from a spatial function)</li> <li>d. The Pauli exclusion principle postulates that electronic wavefunctions for multielectron atoms must be antisymmetric under the interchange of any two electrons</li> <li>e. The determinantal wavefunction (Slater determinant) for the ground state of the He atom is an eigenfunction of the operator L² (the square of the orbital angular momentum operator) and the eigenvalue is 0.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| momentum operator) and the eigenvalue is 0.  f. c) and e)  H 15 <sup>2</sup> L=0  aigenvalue for Lis 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

## Part II. Answer the following and show your work (28 %)

Consider the H-atom electronic transitions from n=2 to n=1. Show into how many lines is this transition split in the presence of a magnetic field, while considering spin-orbit coupling. (8 %)

0



II.2 Find all the term symbols for the He atom excited state  $1s^{1}2p^{1}$ . (8 %)

## II.3 (12%)

(a) Write down the Hamiltonian operator for the Li atom (Z=3) in atomic units (a.u.)

$$\hat{H} = -\frac{\nabla_1^2}{2} - \frac{\nabla_2^2}{2} - \frac{\nabla_3^2}{2} - \frac{3}{\Gamma_1} - \frac{3}{\Gamma_2} - \frac{3}{\Gamma_3} + \frac{1}{\Gamma_{12}} + \frac{1}{\Gamma_{23}} + \frac{1}{\Gamma_{13}}$$

(b) Write down a Slater determinant wavefunction (spin/orbital), without expanding it, for the ground state of the Lithium atom (6%)

## Part III. (42%)

II.1 (14%) Consider a hydrogen atom in an electric field of strength ε. The Hamiltonian operator for this system is:

$$\hat{H} = -\frac{\hbar^2}{2m_e} \nabla^2 - \frac{e^2}{4\pi\varepsilon_o r} + e\varepsilon r \cos\theta$$

- a. Identify H<sup>(1)</sup>, the perturbation to the Hamiltonian of the hydrogen atom as a result of the electric field.
- b. Using perturbation theory, calculate the first-order correction to the ground state energy for this system as a result of the electric field.

b. 
$$E^{(1)} = \int L^{(0)} + \int_{-1}^{(1)} L^{(0)} dC$$

$$= \int_{-1}^{1} \left(\frac{1}{a_0}\right)^{3/2} e^{-\frac{1}{2}a_0} e^{\frac{1}{2}c} \cos \theta \cdot \int_{-1}^{1} \left(\frac{1}{a_0}\right)^{3/2} e^{-\frac{1}{2}a_0} e^{\frac{1}{2}c} dc \sin \theta d\theta \cdot d\theta$$

$$= \int_{-1}^{1} \frac{1}{a_0^3} \cdot e^{\frac{1}{2}} \int_{0}^{\infty} e^{-\frac{1}{2}c} dc \cos \theta \cos \theta$$

$$= \int_{0}^{\infty} \cos \theta d \cos \theta$$

=> 
$$E^{(1)}$$
= 0 and  $E = E^{(0)}$ 

II.2 (14%) Let  $\phi(\alpha) = \left(\frac{\alpha^5}{3\pi}\right)^{1/2} r.\exp(-\alpha r)$  be a trial function for the ground state of the

hydrogen tom. Use the variation method to determine the lowest energy attainable from this function by variation of  $\alpha$ , and compare to the true energy of the ground

$$\mathcal{G} = \frac{\int \Phi(\alpha)^{\frac{1}{2}} \hat{H} \Phi(\alpha) \cdot 4 \pi^{2} dr}{\int \Phi(\alpha) \cdot \Phi(\alpha) \cdot 4 \pi^{2} dr}$$

$$\hat{H} = -\frac{h^{2}}{2m} \frac{1}{r^{2}} \frac{d}{dr} \left(r^{2} \frac{d}{dr}\right) - \frac{2e^{2}}{r^{2}} \qquad Z = 1$$

denominator:

rominator:  

$$S\left(\frac{\alpha S}{3\pi}\right). r^{2} e^{-2\alpha r} \sqrt{\pi r^{2} dr} = \sqrt{\pi}. \frac{\alpha S}{3\pi}. \int_{0}^{\infty} r^{4} e^{-2\alpha r} dr$$

$$= \sqrt{\pi}. \frac{\alpha S}{3\pi}. \frac{4!}{(2\alpha)^{S}}$$

Numerator: 6 25. rexp-xr [ -1/2 d (r2d re-xr)] - e2. re xr (r2d re-xr)] = 4TI. as Srexp-ar [-th. 1 d (12(-are af ear))]- e2e-ar [ 2dr = 411. \frac{\alpha \sigma \sigma \frac{\alpha \sigma \sigma \frac{\alpha \chi^2 \frac = 47.  $\frac{dS}{311}$ .  $\int_{0}^{\infty} e^{-xr} dr = \frac{1}{2\pi} \left[ \frac{h^{2}}{2\pi} \cdot \frac{1}{r^{2}} \left( -\frac{3}{2} \times r^{2} e^{-xr} + \frac{1}{2} x^{2} e^{-xr} + \frac{1}{2} x^{2} e^{-xr} \right) \right] - e^{\frac{x^{2}}{2}}$ = 411. \(\frac{\partial \sigma \sigma \sigma \frac{\partial \partial \parti

$$= \frac{\sqrt{11} \cdot \frac{\alpha s}{3 \pi i}}{0} \int_{0}^{1} \frac{h^{2}}{2m} \left( -\frac{1}{4} d^{2} e^{-\frac{2\alpha r}{4}} + \alpha^{2} r^{4} e^{-\frac{2\alpha r}{4}} 2r^{2} e^{-\frac{2\alpha r}{4}} \right) - e^{2} r^{3} e^{-\frac{2\alpha r}{4}} dr$$

$$= \frac{1}{4} \frac{1}{1} \cdot \frac{\alpha s}{3 \pi} \int_{0}^{1} \frac{h^{2}}{2m} \left[ -\frac{1}{4} \cdot \frac{3!}{2^{2} \alpha^{3}} + \frac{1}{2^{2} \alpha^{3}} + \frac{2!}{2^{2} \alpha^{3}} + \frac{2!}{2^{3} \alpha^{3}} \right] - e^{2} \cdot \frac{3!}{(2\alpha)^{14}}$$

$$\Rightarrow \partial_{z}^{2} - \frac{h^{2}}{2m} \left[ -\frac{1}{4} \cdot \frac{3!}{2^{4} \alpha^{3}} + \frac{1}{2^{2} \alpha^{3}} + \frac{2!}{2^{3} \alpha^{3}} \right] - \frac{e^{2} \cdot 3!}{(2\alpha)^{14}}$$

$$= -\frac{h^{2}}{m} \cdot \frac{2}{3} \frac{\alpha^{2}}{2} \left[ -\frac{3}{2} + \frac{3}{4} + \frac{1}{2} \right] - \frac{\alpha e^{2}}{\alpha}$$

$$= -\frac{h^{2}}{m} \cdot \frac{2}{3} \frac{\alpha^{2}}{2} \cdot -\frac{1}{4} - \frac{\alpha e^{2}}{\alpha}$$

$$= -\frac{h^{2}}{m} \cdot \frac{2}{3} \frac{\alpha^{2}}{2} \cdot -\frac{1}{4} - \frac{\alpha e^{2}}{\alpha}$$

$$= -\frac{h^{2}}{m} \cdot \frac{2}{3} \frac{\alpha^{2}}{2} \cdot -\frac{1}{4} - \frac{\alpha e^{2}}{\alpha}$$

$$= -\frac{h^{2}}{m} \cdot \frac{2}{3} \frac{\alpha^{2}}{2} \cdot -\frac{1}{4} - \frac{\alpha e^{2}}{\alpha}$$

$$= -\frac{h^{2}}{m} \cdot \frac{2}{3} \frac{\alpha^{2}}{2} \cdot -\frac{1}{4} - \frac{\alpha e^{2}}{\alpha}$$

$$= -\frac{h^{2}}{m} \cdot \frac{2}{3} \frac{\alpha^{2}}{2} \cdot -\frac{1}{4} - \frac{\alpha e^{2}}{\alpha}$$

$$= -\frac{h^{2}}{m} \cdot \frac{2}{3} \frac{\alpha^{2}}{2} \cdot -\frac{1}{4} - \frac{\alpha e^{2}}{\alpha}$$

$$= -\frac{h^{2}}{m} \cdot \frac{2}{3} \frac{\alpha^{2}}{2} \cdot -\frac{1}{4} - \frac{\alpha e^{2}}{\alpha}$$

$$= -\frac{h^{2}}{m} \cdot \frac{2}{3} \frac{\alpha^{2}}{2} \cdot -\frac{1}{4} - \frac{\alpha e^{2}}{\alpha}$$

$$= -\frac{h^{2}}{m} \cdot \frac{2}{3} \frac{\alpha^{2}}{2} \cdot -\frac{1}{4} - \frac{\alpha e^{2}}{\alpha}$$

$$= -\frac{h^{2}}{m} \cdot \frac{2}{3} \frac{\alpha^{2}}{2} \cdot -\frac{1}{4} - \frac{\alpha e^{2}}{\alpha}$$

$$= -\frac{h^{2}}{m} \cdot \frac{2}{3} \frac{\alpha^{2}}{3} \cdot -\frac{1}{4} - \frac{\alpha e^{2}}{\alpha}$$

$$= -\frac{h^{2}}{m} \cdot \frac{2}{3} \frac{\alpha^{2}}{3} \cdot -\frac{1}{4} - \frac{\alpha e^{2}}{\alpha}$$

$$= -\frac{h^{2}}{m} \cdot \frac{2}{3} \frac{\alpha^{2}}{3} \cdot -\frac{1}{4} - \frac{\alpha e^{2}}{\alpha}$$

$$= -\frac{h^{2}}{m} \cdot \frac{2}{3} \frac{\alpha^{2}}{3} \cdot -\frac{1}{4} - \frac{\alpha e^{2}}{\alpha}$$

$$= -\frac{h^{2}}{m} \cdot \frac{2}{3} \frac{\alpha^{2}}{3} \cdot -\frac{1}{4} - \frac{\alpha e^{2}}{\alpha}$$

$$= -\frac{h^{2}}{m} \cdot \frac{2}{3} \frac{\alpha^{2}}{3} \cdot -\frac{1}{4} - \frac{\alpha e^{2}}{\alpha}$$

$$= -\frac{h^{2}}{m} \cdot \frac{2}{3} \frac{\alpha^{2}}{3} \cdot -\frac{1}{4} - \frac{\alpha^{2}}{3} - \frac{\alpha^{2}}{3} \frac{\alpha^{2}}{3} - \frac{\alpha^{2}}{3}$$

III.3 (14%)  $\phi_a$  and  $\phi_b$  are chosen as the normalized basis (real) functions for a linear combination of atomic orbitals (LCAO) wavefunction  $\Psi$  for a one-electron, homonuclear, diatomic molecule:

$$\Psi = c_1 \phi_a + c_2 \phi_b$$

It is found that the values for some of the integrals (matrix elements) involving these functions are: (a.u. is atomic units).

$$\begin{aligned} &\mathbf{H}_{aa} = \int \!\!\!\!\phi_a^* \hat{H} \phi_a d\tau = -2 \text{ a.u.} \\ &\mathbf{H}_{ab} = \int \!\!\!\!\phi_a^* \hat{H} \phi_b d\tau = -1 \text{ a.u.} \\ &\mathbf{H}_{bb} = \int \!\!\!\!\phi_b^* \hat{H} \phi_b d\tau = -2 \text{ a.u.} \\ &\mathbf{S}_{ab} = \int \!\!\!\!\phi_a^* \phi_b d\tau = 1/4 \end{aligned}$$

where  $\hat{H}$  is the molecular Hamiltonian operator.

- Using the variation method, find the minimized energy using this trial function (the upper bound energy for the exact lowest electronic energy for this system).
- b. Find the corresponding values of  $c_1$  and  $c_2$  for the LCAO normalized approximate wavefunction  $\Psi$  having this energy.

## Continue Problem III.3. Do not detach.

Name:

Signature:
$$\begin{vmatrix} -2 + \frac{12}{5} \\ -1 + \frac{12}{20} \\ -1 + \frac{12}{20} \end{vmatrix} = -1 + \frac{12}{20} \begin{vmatrix} c_1 \\ c_2 \end{vmatrix} = 0$$

$$= (-2 + \frac{12}{5})c_1 + (-1 + \frac{12}{20})c_2 = 0 \qquad (1)$$

$$= (-1 + \frac{12}{20})c_1 + (-2 + \frac{12}{5})c_2 = 0 \qquad (2)$$

$$= (1) = (-\frac{10 + 12}{5})c_1 + (-\frac{20 + 12}{5})c_2 = 0 \Rightarrow \frac{2}{5} c_1 - \frac{8}{20} c_2 = 0$$

$$= (1) = (-\frac{10 + 12}{5})c_1 + (-\frac{20 + 12}{20})c_2 = 0 \Rightarrow \frac{2}{5} c_1 - \frac{8}{20} c_2 = 0$$

$$= (1) = (-\frac{10 + 12}{5})c_1 + (-\frac{20 + 12}{5})c_2 = 0 \Rightarrow \frac{2}{5} c_1 - \frac{8}{20} c_2 = 0$$

$$= (1) = (-\frac{10 + 12}{5})c_1 + (-\frac{20 + 12}{5})c_2 = 0 \Rightarrow \frac{2}{5} c_1 - \frac{8}{20} c_2 = 0$$

$$= (1) = (-\frac{10 + 12}{5})c_1 + (-\frac{20 + 12}{5})c_2 = 0 \Rightarrow \frac{2}{5} c_1 - \frac{8}{20} c_2 = 0$$

$$= (1) = (-\frac{10 + 12}{5})c_1 + (-\frac{20 + 12}{5})c_2 = 0 \Rightarrow \frac{2}{5} c_1 - \frac{8}{20} c_2 = 0$$

$$= (1) = (-\frac{10 + 12}{5})c_1 + (-\frac{20 + 12}{5})c_2 = 0 \Rightarrow \frac{2}{5} c_1 - \frac{8}{20} c_2 = 0$$

$$= (1) = (-\frac{10 + 12}{5})c_1 + (-\frac{20 + 12}{5})c_2 = 0 \Rightarrow \frac{2}{5} c_1 - \frac{8}{20} c_2 = 0$$

$$= (1) = (-\frac{10 + 12}{5})c_1 + (-\frac{20 + 12}{5})c_2 = 0 \Rightarrow \frac{2}{5} c_1 - \frac{8}{20} c_2 = 0$$

$$= (1) = (-\frac{10 + 12}{5})c_1 + (-\frac{20 + 12}{5})c_2 = 0 \Rightarrow \frac{2}{5} c_1 - \frac{8}{20} c_2 = 0$$

$$= (1) = (-\frac{10 + 12}{5})c_1 + (-\frac{20 + 12}{5})c_2 = 0 \Rightarrow \frac{2}{5} c_1 - \frac{8}{20} c_2 = 0$$

$$= (1) = (-\frac{10 + 12}{5})c_1 + (-\frac{20 + 12}{5})c_2 = 0 \Rightarrow \frac{2}{5} c_1 - \frac{8}{20} c_2 = 0$$

$$= (1) = (-\frac{10 + 12}{5})c_1 + (-\frac{20 + 12}{5})c_2 = 0 \Rightarrow \frac{2}{5} c_1 - \frac{8}{20} c_2 = 0$$

$$= (1) = (-\frac{10 + 12}{5})c_1 + (-\frac{20 + 12}{5})c_2 = 0 \Rightarrow \frac{2}{5} c_1 - \frac{8}{20} c_2 = 0$$

$$= (1) = (-\frac{10 + 12}{5})c_1 + (-\frac{20 + 12}{5})c_2 = 0 \Rightarrow \frac{2}{5} c_1 - \frac{8}{20} c_2 = 0$$

$$= (1) = (-\frac{10 + 12}{5})c_1 + (-\frac{20 + 12}{5})c_2 = 0 \Rightarrow \frac{2}{5} c_1 - \frac{8}{20} c_2 = 0$$

$$= (1) = (-\frac{10 + 12}{5})c_1 + (-\frac{20 + 12}{5})c_2 = 0 \Rightarrow \frac{2}{5} c_1 - \frac{8}{20} c_2 = 0$$

$$= (1) = (1) + (-\frac{10 + 12}{5})c_1 + (-\frac{20 + 12}{5})c_2 = 0 \Rightarrow \frac{2}{5} c_1 - \frac{8}{20} c_2 = 0$$

$$= (1) = (1) + (-\frac{10 + 12}{5})c_1 + (-\frac{20 + 12}{5})c_2 = 0 \Rightarrow \frac{2}{5} c_1 - \frac{8}{20} c_2 = 0$$

$$= (1) = (1) + (-\frac{10 + 12}{5})c_1 + (-\frac{10 + 12}{5})c_2 = 0 \Rightarrow \frac{2}{5} c_1 - \frac{8}{20} c_2 = 0$$

$$= (1) = (1) + (-\frac{10 + 12}{5})c_1 +$$