Chemistry 218, Molecular Structure
Second Examination- Spring 2009
Lara Halaoui
KEY

Name:

ID number:

Signature:

Useful information:

Permittivity of vacuum: $\varepsilon_{0}=8.854187816 \times 10^{-12} \mathrm{C}^{2} . \mathrm{J}^{-1} . \mathrm{m}^{-1}$
$4 \pi \varepsilon_{0}=1.112650056 \times 10^{-10} \mathrm{C}^{2} \cdot \mathrm{~J}^{-1} \cdot \mathrm{~m}^{-1}$
Bohr magneton: $\beta=9.2740154 \times 10^{-24} \mathrm{JTT}^{-1}$
Planck constant: $h=6.6260755 \times 10^{-34} \mathrm{~J} . \mathrm{s}$
Proton charge: $e=1.60217733 \times 10^{-19} \mathrm{C}$
Speed of light in vacuum: $c=2.99792458 \times 10^{8} \mathrm{~m} \cdot \mathrm{~s}^{-1}$
Electron rest mass: $m_{e}=9.1093897 \times 10^{-31} \mathrm{~kg}$
Bohr radius: $a_{0}=5.29177249 \times 10^{-11} \mathrm{~m}$
A. Hartree $E_{h}=\frac{m_{e} e^{4}}{16 \pi^{2} \varepsilon_{0}^{2} \hbar^{2}}=\frac{e^{2}}{4 \pi \varepsilon_{0} a_{0}}=4.3597 \times 10^{-18} \mathrm{~J}$

Potential energy V (nuclear charge Z and electron): $V=-\frac{Z e^{2}}{4 \pi \varepsilon_{0} r}$ or $-\frac{\mathrm{Z} \mathrm{e}^{2}}{r}$
$E_{n}=\frac{-m_{e} e^{4}}{32 \pi^{2} \varepsilon_{0}^{2} \hbar^{2}{ }^{2} n^{2}}=\frac{-e^{2}}{8 \pi \varepsilon_{0} a_{0} n^{2}}$ or $\frac{-e^{2}}{2 a_{0} n^{2}}$ for H atom
$\nabla^{2}=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial}{\partial r}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta}\right)+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}}$
$\psi_{1 s}=\frac{1}{\sqrt{\pi}}\left(\frac{1}{a_{0}}\right)^{3 / 2} e^{-r / a_{n}}$
$d \tau=r^{2} \sin \theta d r d \theta d \phi$
$\int_{0}^{\infty} x^{n} e^{-a x} d x=\frac{n!}{a^{n+1}} ; n$ is a positive integer
$\int_{0}^{\infty} x^{2 n} e^{-\alpha x^{2}} d x=\frac{1 \cdot 3 \cdot 5 \ldots(2 n-1)}{2^{n+1}} \sqrt{\frac{\pi}{\alpha^{2 n+1}}}$

Rayleigh Ratio: $\xi=\frac{\int \psi^{*} \hat{H} \psi d \tau}{\int \psi^{*} \psi d \tau}$
Rayleigh-Ritz method: $\operatorname{det}\left|H_{i j}-\xi S_{i j}\right|=0$
Perturbation theory, 1st order correction to energy: $E^{(1)}=\int \psi^{(0)^{*}} \hat{H}^{(1)} \psi^{(0)} d \tau$
Electronic atomic transitions selection rules, absence of magnetic field:

$$
\Delta S=0 ; \Delta L= \pm 1 ; \Delta J=0, \pm 1 \text { except } \mathrm{J}=0 \rightarrow \mathrm{~J}=0
$$

Electronic atomic transitions selection rules, presence of magnetic field:

$$
\Delta S=0 ; \Delta L= \pm 1 ; \Delta J=0, \pm 1 \text { except } \mathrm{J}=0 \rightarrow \mathrm{~J}=0 ; \Delta \mathrm{M}_{\mathrm{j}}=0, \pm 1
$$

Part I. Instructions: Circle one answer. No penalty. 5 points each. (25%)

- When considering spin/orbit coupling, in the absence of a magnetic field, the atomic absorption transition of the $n=3$ to $n=1$ of the hydrogen atom will consist of

f. None of the above, the number of lines is \qquad
- Which of the following is the correct term symbol for the Ground State of Zr
$\left([\mathrm{Kr}] 5 \mathrm{~s}^{2} 4 \mathrm{~d}^{2}\right)$ (hint: find ground state term symbol without finding all the term symbols).
a. ${ }^{3} \mathrm{D}_{2}$
b. ${ }^{1} \mathrm{D}_{2}$
$\begin{array}{lllll}1 & 7 & - & - \\ m l=2 & 1 & 0 & -1 & -2\end{array}$

1. maximum mulliplicily: $S=1$
2. Largest L (Lowest J ($1 / 2$ filled)
c. ${ }^{\text {c. }}{ }^{3} \mathrm{~F}_{4}{ }^{3}{ }^{1} \mathrm{~F}_{4}$
$\Rightarrow{ }_{\text {max }}^{m L=2}=3 \Rightarrow L=3 \Rightarrow 3^{3} F_{2}$
3. Lowest $J(C 1 / 2$ filled)
$J:|L-S I=3-|=2$.
f. None of the above, the term symbol for the ground state is \qquad

Arrange the following term symbols for the C atom configuration $1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{2}:{ }^{1} \mathrm{D}_{2}$, ${ }^{3} \mathrm{P}_{0},{ }^{3} \mathrm{P}_{1},{ }^{3} \mathrm{P}_{2},{ }^{1} \mathrm{~S}_{0}$ in the order of increasing energy according to Hond's rules for equivalent electrons. Hinds
a. ${ }^{1} \mathrm{D}_{2}<{ }^{3} \mathrm{P}_{0}<{ }^{3} \mathrm{P}_{1}<{ }^{3} \mathrm{P}_{2}<\mathrm{S}^{1}$ o Rules:
(b.) ${ }^{3} \mathrm{P}_{0}<{ }^{3} \mathrm{P}_{1}<{ }^{3} \mathrm{P}_{2}<{ }^{1} \mathrm{D}_{2}<{ }^{1} \mathrm{~S}_{0}$
c. ${ }^{3} \mathrm{P}_{0}<{ }^{3} \mathrm{P}_{1}<{ }^{3} \mathrm{P}_{2}<\mathrm{S}_{0}<{ }^{1} \mathrm{D}_{2}$
then largest L
d. ${ }^{3} \mathrm{P}_{2}<{ }^{3} \mathrm{P}_{1}<{ }^{3} \mathrm{P}_{0}<{ }^{1} \mathrm{D}_{2}<{ }^{1} \mathrm{~S}_{0}$
e. ${ }^{3} \mathrm{P}_{2}<{ }^{3} \mathrm{P}_{1}<{ }^{3} \mathrm{P}_{0}<{ }^{1} \mathrm{~S}_{0}<{ }^{1} \mathrm{D}_{2}$

- Which of the following wavefunctions is acceptable for a 2 electron system (He)
a. $\left.\Psi_{n}(1) \Psi_{n}(2) \alpha(1)\right) \beta(2)$
(b.) $\Psi_{n}(1) \Psi_{n}(2)[\alpha(2) \beta(1)-\alpha(1) \beta(2)]$
must be antisymmetric for entacharge
c. $\Psi_{n}(1) \Psi_{n}(2)[\alpha(2) \alpha(1)-\beta(1) \beta(2)]$
of elections
d. $\Psi_{n}(1) \Psi_{n}(2)[\alpha(2) \beta(1)+\alpha(1) \beta(2)]$
e. $\Psi_{n}(1) \Psi_{n}(2)[\alpha(2) \alpha(1)+\beta(1) \beta(2)]$

$$
\Rightarrow P_{12} 4=-4
$$

- Which of the following statements is false?
a. The ground state energy for the He^{+}atom is $-2 \mathrm{E}_{\mathrm{h}}$ the
b. The atomic unit for distance is the Bohr radius a_{0}, the atomic unit for energy is the Hartree E_{h}, and the atomic unit for angular momentum is $\frac{1}{}$ True
C. The spin-orbital wavefunction for the Li atom $(\mathrm{Z}=3)$ is separable into a spin part and a spatial part (ie., it is a product of a spin function separated from a spatial
function) and spatial
false. only $2 . e$ system separable into speiss and
d. The Pauli exclusion principle postulates that electronic wavefunctions for multielectron atoms must be antisymmetric under the interchange of any two electrons
the
e. The determinantal wavefunction (Slater determinant) for the ground state of the
$H e$ atom is an eigenfunction of the operator L^{2} (the square of the orbital angular momentum operator) and the eigenvalue is 0 .
f. c) and e)

Part II. Answer the following and show your work (28 \%)
II. 1 Consider the H -atom electronic transitions from $\mathrm{n}=2$ to $\mathrm{n}=1$. Show into how many lines is this transition split in the presence of a magnetic field, while considering spin-orbit coupling. (8%)
Un n 2s':2s1/2 $2 p^{\prime}: 2 p_{1 / 2} \quad 2 p_{3 / 2}$
_n=1 $\quad \mid s^{\prime}: 2 s 1 / 2$
presence of a magnetic field: Selection Rule $\Delta M J=0, \pm 1$

II. 2 Find all the term symbols for the He atom excited state $1 \mathrm{~s}^{1} 2 \mathrm{p}^{1}$. (8 \%)

$$
12 \text { microstates } \begin{aligned}
& m l_{1}=0 \\
& m l_{2}=1,0,-1 \\
& \Rightarrow M L=1,0,-1 \\
& m s_{1}= \pm 1 / 2 \\
& m s 2= \pm 1 / 2 \\
& \Rightarrow H S=1,0,-1
\end{aligned}
$$

HS

MS Max $=1 \Rightarrow S=1 \Rightarrow 3 P \Rightarrow 3 P_{2},{ }^{3} P_{1},{ }^{3} P_{0}$
remains 3. $M L_{\text {max }}=1 \Rightarrow I P \Rightarrow I=1 \Rightarrow 1 P_{1}$

II. 3 (12\%)

(a) Write down the Hamiltonian operator for the Li atom $(\mathrm{Z}=3)$ in atomic units (a.u.) (6\%)

$$
\hat{H}=-\frac{V_{1}^{2}}{2}-\frac{\nabla_{2}^{2}}{2}-\frac{\nabla_{3}^{2}}{2}-\frac{3}{r_{1}}-\frac{3}{r_{2}}-\frac{3}{r_{3}}+\frac{1}{r_{12}}+\frac{1}{r_{23}}+\frac{1}{r_{13}}
$$

(b) Write down a Slater determinant wavefunction (spin/orbital), without expanding it, for the ground state of the Lithium atom (6\%)

$$
\psi=\frac{1}{\sqrt{3!}}\left|\begin{array}{lll}
\text { is } \alpha(1) & \text { is } \beta(1) & 2 s \alpha(1) \\
\text { is } \alpha(2) & \text { is } \beta(2) & 2 s \alpha(2) \\
\text { is } \alpha(3) & \text { is } \beta(3) & 2 s \alpha(3)
\end{array}\right|
$$

Part III. (42%)

II. 1 (14%) Consider a hydrogen atom in an electric field of strength ε. The Hamiltonian operator for this system is:

$$
\hat{H}=-\frac{\hbar^{2}}{2 m_{e}} \nabla^{2}-\frac{e^{2}}{4 \pi \varepsilon_{0} r}+e \varepsilon r \cos \theta
$$

a. Identify $\mathrm{H}^{(1)}$, the perturbation to the Hamiltonian of the hydrogen atom as a result of the electric field.
b. Using perturbation theory, calculate the first-order correction to the ground state energy for this system as a result of the electric field.
a. $H^{(1)}=e \varepsilon r \cos \theta$
b. $E^{(1)}=\int \Psi^{(0)} H^{(1)} \Psi^{(0)} d \tau$
$=\int \frac{1}{\sqrt{\pi}}\left(\frac{1}{a_{0}}\right)^{3 / 2} e^{-r / a_{0}} e \varepsilon r \cos \theta \cdot \frac{1}{\sqrt{\pi}}\left(\frac{1}{a_{0}}\right)^{3 / 2} e^{-r / a_{0}} r^{2} d r \sin \theta d \theta \cdot d \phi$
$=\frac{1}{\pi} \cdot \frac{1}{a_{0}^{3}} \cdot e \varepsilon \int_{0}^{\infty} e^{-2 r \mid a_{0}} r^{3} d r \int_{0}^{2 \pi} d \phi \underbrace{\int_{0}^{\pi} \sin \theta d \theta \cdot \cos \theta}$

$$
\begin{aligned}
& =\int_{0}^{\pi} \cos \theta d \cos \theta \\
& =\left.\cos ^{2} \frac{\theta}{2}\right|_{0} ^{\pi}=\frac{1}{2}-\frac{1}{2}=0
\end{aligned}
$$

$$
\Rightarrow E^{(1)}=0
$$

$$
\text { and } E=E^{(0)} \text {. }
$$

II. $2(14 \%)$ Let $\phi(\alpha)=\left(\frac{\alpha^{5}}{3 \pi}\right)^{1 / 2} r \cdot \exp (-\alpha r)$ be a trial function for the ground state of the
hydrogen tom. Use the variation method to determine the lowest energy attainable from this function by variation of α, and compare to the true energy of the ground state of the hydrogen atom.
$\vartheta=\frac{\int \phi(\alpha)^{*} \hat{H} \phi(\alpha) \cdot 4 \pi r^{2} d r}{\int \phi(\alpha) \phi(\alpha) \cdot 4 \pi r^{2} d r}$

$$
\dot{H}=-\frac{\hbar^{2}}{2 m} \frac{1}{r^{2}} \frac{d}{d r}\left(r^{2} \frac{d}{d r}\right)-\frac{2 e^{2}}{r} \quad Z=1
$$

denominator:

$$
\begin{aligned}
& \text { nominator: } \\
& \int_{0}^{\infty}\left(\frac{\alpha 5}{3 \pi}\right) \cdot r^{2} e^{-2 \alpha r} \cdot 4 \pi r^{2} d r=4 \pi \cdot \frac{\alpha 5}{3 \pi} \cdot \int_{0}^{\infty} r^{4} e^{-2 \alpha r} d r
\end{aligned}
$$

$$
=4 \pi \cdot \frac{\alpha^{5}}{3 \pi} \cdot \frac{4!}{(2 \alpha)^{5}}
$$

Numerator: ${ }_{4} \int_{0}^{\omega} \frac{\alpha 5}{3 \pi} \cdot r \exp -\alpha r\left\{\left[-\frac{h^{2}}{2 m} \frac{1}{r^{2}} \frac{d}{d r}\left(r^{2} \frac{d}{d r} r e^{-\alpha r}\right)\right]-\frac{e^{2}}{r} \cdot r e^{-\alpha r}\right\} r^{2} d r$
$=4 \pi \cdot \frac{\alpha 5}{3 \pi} \int_{0}^{0} r \exp -\alpha r\left\{\left[-\frac{\hbar^{2}}{2 m} \cdot \frac{1}{r^{2}} \frac{d}{d r}\left(r^{2}\left(-\alpha r e^{-\alpha r}+e^{-\alpha r}\right)\right)\right]-e^{2} e^{-\alpha r^{2}}\right\} d r$

$$
\begin{aligned}
& =4 \pi \cdot \frac{\alpha 5}{3 \pi} \int_{0}^{\infty}-\frac{\hbar^{2}}{2 m}\left(-4 \alpha r^{3} e^{-2 \alpha r}+\alpha^{2} r^{4} e^{-2 \alpha r}+2 r^{2} e^{-2 \alpha r}\right)-e^{2} r^{3} e^{-2 \alpha r} d r \\
& =4 \pi \cdot \frac{\alpha^{5}}{3 \pi}\left\{-\frac{\hbar^{2}}{2 m}\left[-4 \alpha \cdot \frac{3!}{(2 \alpha)^{4}}+\alpha^{2} \cdot \frac{4!}{(2 \alpha)^{5}}+2 \cdot \frac{2!}{(2 \alpha)^{3}}\right]-e^{2} \cdot \frac{3!}{(2 \alpha)^{4}}\right\} \\
& \Rightarrow \varepsilon=\frac{-\frac{\hbar^{2}}{2 m}\left[-\frac{4 \cdot 3!}{2^{4} \alpha^{3}}+\frac{4!}{2^{5} \alpha^{3}}+\frac{2 \cdot 2!}{2^{3} \alpha^{3}}\right]-\frac{e^{2} \cdot 3!}{(2 \alpha)^{4}}}{\frac{4!}{(2 \alpha)^{5}}} \\
& =-\frac{\hbar^{2}}{m} \cdot \frac{2 \alpha^{2}}{3}\left[-\frac{3}{2}+\frac{3}{4}+\frac{1}{2}\right]-\frac{\alpha e^{2}}{2} \\
& =-\frac{\hbar^{2}}{m} \cdot \frac{2 \alpha^{2}}{3} \cdot-\frac{1}{4}-\frac{\alpha e^{2}}{2} \\
& =-\frac{h^{2} \alpha^{2}}{6 m}-\frac{\alpha e^{2}}{2} \\
& \frac{d \xi}{d \alpha}=0 \Rightarrow \frac{\hbar^{2}}{6 m} \cdot 2 \alpha-\frac{e^{2}}{2}=0 \Rightarrow \alpha=\frac{3 e^{2} m}{2 \hbar^{2}} \\
& \xi=E_{\text {min }}=-\frac{\hbar^{2}}{6 m} \cdot\left(\frac{3 e^{2} m}{2 \hbar^{2}}\right)^{2}-\left(\frac{3 e^{2} m}{2 \hbar^{2}}\right)\left(\frac{\alpha e^{2}}{2}\right)=-\frac{3}{8}\left(\frac{e^{2}}{a_{0}}\right) \\
& \text { true }=\frac{-e^{2}}{2 a_{0}}<-\frac{3}{8} \frac{e^{2}}{a_{0}} \text {. }
\end{aligned}
$$

lower
III. $3(14 \%) \phi_{\mathrm{a}}$ and ϕ_{b} are chosen as the normalized basis (real) functions for a linear combination of atomic orbitals (LCAO) wavefunction Ψ for a one-electron, homonuclear, diatomic molecule:

$$
\Psi=c_{1} \phi_{a}+c_{2} \phi_{b}
$$

It is found that the values for some of the integrals (matrix elements) involving these functions are: (a.u. is atomic units).
$\mathrm{H}_{\mathrm{aa}}=\int \phi_{a}^{*} \hat{H} \phi_{a} d \tau=-2$ au.
$H_{a b}=\int \phi_{a}^{*} \hat{H} \phi_{b} d \tau=-1$ a.u.
$H_{\mathrm{bb}}=\int \phi_{b}^{*} \hat{H} \phi_{b} d \tau=-2$ au.
$S_{a b}=\int \dot{\phi}_{a}^{*} \phi_{b} d \tau=1 / 4$
where \hat{H} is the molecular Hamiltonian operator.
a. Using the variation method, find the minimized energy using this trial function (the upper bound energy for the exact lowest electronic energy for this system).
b. Find the corresponding values of c_{1} and c_{2} for the LCAO normalized approximate wavefunction Ψ having this energy.

$\left|\begin{array}{ll}-2-\xi & -1-\frac{\xi}{4} \\ -1-\frac{\xi}{4} & -2-\xi\end{array}\right|=0$
$\Rightarrow(-2-\xi)(-2-\xi)-\left(-1-\frac{\varphi}{4}\right)\left(-1-\frac{\varphi}{4}\right)=0$

$$
\Rightarrow(2+\xi)^{2}-\left(1+\frac{\xi}{4}\right)^{2}=0
$$

$$
\Rightarrow 2+\xi= \pm 1+\frac{\xi}{4}
$$

$$
\begin{aligned}
& \Rightarrow 2+\xi= \pm 1+\frac{2}{4} \\
& 2+\xi=1+\frac{\xi}{4} \Rightarrow \xi_{=}=-\frac{4}{3} \text { a.u. } \quad
\end{aligned} \quad(-1.333 \text { a.u. })
$$

$$
2+\xi=-1-\frac{u_{2}}{4} \Rightarrow \xi=-\frac{12}{5} \text { a.u. }
$$

$$
\text { (. } 2.4 \text { a.u.) }
$$

$$
E_{\text {min }}=-\frac{12}{5} a \cdot u .
$$

Name:

$$
\begin{align*}
& \text { Signature: } \\
& \left|\begin{array}{cc}
-2+\frac{12}{5} & -1+\frac{12}{20} \\
-1+\frac{12}{20} & -2+\frac{12}{5}
\end{array}\right|\left|c_{1}\right|=0 \\
& \tag{1}\\
& \Rightarrow\left(-2+\frac{12}{5}\right) c_{1}+\left(-1+\frac{12}{20}\right) c_{2}=0 \tag{2}\\
& \text { and }
\end{align*} \Rightarrow\left(-1+\frac{12}{20}\right) c_{1}+\left(-2+\frac{12}{5}\right) c_{2}=0 \quad \text { (2) }
$$

same with (2).

$$
\begin{aligned}
& \phi=c_{1} \phi a+c_{1} \phi b=c_{1}(\phi a+\phi b) \\
& \int \phi^{+} \phi=1 \Rightarrow c_{1}(\phi a+\phi b) \cdot c_{1}(\phi a+\phi b)=1 \\
& \Rightarrow c_{1}^{2}\left[\int \phi a b+2 \int \phi a b+\int \phi b \phi b\right]=1 \\
& \Rightarrow c_{1}^{2}[S a a+2 S a b+S b b]=1 \\
& \Rightarrow c_{1}^{2} \cdot\left[1+2 \cdot \frac{1}{4}+1\right]=1 \\
& \Rightarrow c_{1}^{2} \cdot \frac{5}{2}=1 \Rightarrow c_{1}= \pm \sqrt{\frac{2}{5}} \\
& \Rightarrow \phi=\sqrt{\frac{2}{5}}(\phi a+\phi b)
\end{aligned}
$$

